
International Journal of Modern Engineering Research (IJMER) 

www.ijmer.com                        Vol.1, Issue.2, pp-364-370                   ISSN: 2249-6645 

                 www.ijmer.com                                                  364 | P a g e  

 

 

 
 

Anwesh Chowdary
1
,    Dr. G. MadhusudhanaRao

2 

1
Dept.of.EEE, KL University-Guntur, Andhra Pradesh, INDIA 

2
Dept.of.EEE, JJ Group of Institutions-Hyd, Andhra Pradesh, INDIA 

 

ABSTRACT 
This paper presents a detailed investigation into 

the effectiveness of iterative methods in solving the 

linear system problem in power flow solution 

process. Previously Newton method employing an 

LU method, GMRES method has been one of the 

most widely used power flow solution algorithms 

A fast Newton-FGMRES method for power flow 

calculations is proposed in this paper. Three 

accelerating schemes to speed up the Newton-

FGMRES method are proposed.. The simulation 

result gives the effectiveness of proposing one 

compared with existing methods. 

Index Terms: Flexible GMRES method, iterative 

methods, Newton power flow calculation. 

 

I. INTRODUCTION 
A majority of computational effort in the Newton 

power flow method lies in solving a set of linear 

equations. The traditional direct LU factorization 

method has been popular in solving a set of linear 

equations. In the last 20 years or so, the iterative 

methods emerged as a vital alternative to the 

traditional Newton-LU method due to its speed. 

However, direct methods find the exact solution after 

a finite number of steps. Iterative methods, on the 

other hand, successively approximate the solution to 

a predetermined degree of accuracy based on an 

initial guess. 

For a set of very large linear equations, the use of 

direct methods is impractical; it simply takes too 

long. Experience in solving VLSI circuit design 

problems has confirmed the impracticality of LU 

factorization for large circuit design problems. The 

cost of using direct methods to solve a system of 

linear equations is of the order for dense matrices and 

to for sparse matrices. Stationary iterative methods 

bring the cost down to the order of for dense matrices 

and for sparse matrices. 

Non stationary iterative methods, such as Krylov 

subspace methods [1], [2], converge in at most 

iterations (assuming no round-off error), where the 

system size, and preconditioning often significantly is  

 

reduces the required number of iterations. The 

benefits of using iterative methods over direct 

methods increase with system size. While both 

iterative methods and direct methods are applicable 

to solve small systems of linear equations, it is often 

hard to solve very large linear equations without 

using an iterative method. Direct methods take longer 

computation time for large-scale systems and this 

difficulty can be greatly improved by the use of 

iterative methods. It is important to note that the 

distinction between direct and iterative methods is 

becoming more blurred, as many preconditioning 

techniques result in methods that are a combination 

of both iterative and direct solvers. Nevertheless, 

there is still much to be learned from both methods. 

The advantages of iterative solvers over direct 

methods based on the direct LU factorization method 

in power system applications have been demonstrated 

in [3]–[11]. It is now recognized by many researchers 

that the Newton-GMRES (generalized minimal 

residual) method can outperform the Newton-LU 

method when solving large-scale power flow 

equations. A significant amount of speed-up, for 

instance 50%, obtained by the Newton-GMRES 

method over the Newton-LU method has been 

achieved. Nonstationary/Krylov subspace methods 

have become more complicated because the 

operations performed at each step involve iteration 

dependent coefficients. The oldest Krylov subspace 

method is the Conjugate Gradient (CG) method for 

symmetric positive definite (SPD) matrices. Since the 

discovery of the oldest Krylov subspace method, the 

Conjugate Gradient method, much work has been 

done to find similar methods that can be applied to 

nonsymmetric and/or nondefinite matrices. Some of 

these newer, more general methods include the 

GMRES method, the Biconjugate Gradient Stabilized 

method, and the Quasi-Minimal Residual method. 

These methods are all termed Krylov subspace 

methods because they are derived with respect to a 

Krylov basis. 

For iterative Krylov subspace methods, it has 

been found that preconditioning plays an important 
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role in the convergence rate of iterative solvers. 

Several preconditioners developed for power system 

computations appeared in [5], [7], and [12]. 

However, these preconditioners for “normalizing” 

linearized power mismatch equations were fixed at 

each Newton iteration. Recently, an adaptive 

preconditioner was proposed for the Jacobian-free 

Newton-GMRES(m) method in [13]. The proposed 

preconditioners were updated using a rank-one 

update algorithm. However the updated 

preconditioners were only used for the linearized 

equations of next iterations. The preconditioners were 

still kept constant while solving the linear equations. 

To further improve the iterative methods, a 

flexible inner outer Krylov subspace method 

(FGMRES, flexible inner-outer preconditioned 

GMRES) was developed [14], [15]. Different from 

the traditional iterative Krylov subspace methods, the 

preconditioners used in this FGMRES method were 

allowed to vary with in each iteration. Thus, the 

FGMRES method has been observed to be more 

effective than the traditional GMRES in several 

numerical studies [14]. 

In this paper, the FGMRES method is applied to 

solve linear equations arising from the Newton power 

flow method. To further improve the speed of this 

Newton-FGMRES method, three accelerating 

schemes are developed and incorporated into the 

proposed Newton-FGMRES. This paper compares 

the convergence characteristics and computational 

speed of the Newton-FGMRES and fast Newton-

FGMRES with the traditional Newton-GMRES on 

two practical power systems: a 12 000-bus system 

and a 21 000-bus system. Numerical studies show the 

advantages of the proposed fast Newton-FGMRES in 

computational speed and in robustness under 

different loading conditions. We point out that the 

traditional direct method (Newton-LU) was used as a 

benchmark method for both the traditional Newton-

GMRES method and the fast Newton-FGMRES 

method. We have also evaluated the fast decoupled 

Newton method on the two large-scale power 

systems. However, the fast decoupled Newton 

method diverges on both test systems. 

 

2.1. PROBLEM FORMULATION 
It is assumed that all control devices remain fixed 

throughout the Newton solution process. Hence, 

voltage regulating generators will be considered as 

PV buses with unlimited reactive capabilities. The 

power flow Jacobian will be formulated in polar 

coordinates, as follows A single iteration of the 

Newton process involves solving equation (1) for the 

state update (A@,+) and then updating the state 

vector (0, V). Traditionally, the linear system (1) is 

solved via an LW factorization of the Jacobian, a 

forward elimination and a backward substitution. 

When solving the power flow equations, the Jacobian 

is relatively inexpensive to evaluate, since evaluation 

of the bus power mismatches involves similar 

calculations. Likewise, the forward elimination and 

backward substitution procedures are fairly 

inexpensive due to efficient sparse storage of the 

matrix factors L and U. Based on the UNIX run-time 

profiler output, the most time-consuming procedure 

of a single Newton iteration is the LU factorization of 

the Jacobian matrix. For large-scale power systems 

(e.g., the 3493 bus case studied here), the cost of an 

LU factorization of the system Jacobian dominates 

the costs of the other operations, consuming 

approximately 85% of the total Newton process 

execution time. 

2.2. NEWTON METHODS: 
Nonlinear algebraic systems of equations are usually 

solved by a Newton method due to the local quadratic 

convergence. While this local contraction property is 

desirable, it is often the case that the last step of the 

Newton method decreases the residual of the 

nonlinear system well beyond the user specified 

tolerance. This “over solving” cannot be avoided in 

an exact Newton method when the linear system is 

solved directly via an LU factorization. However, an 

inexact Newton method, such as Newton- GMRES, 

monitors the level of accuracy in the solution by 

keeping track of the norm of the residual. Hence, an 

inexact Newton method based on an iterative linear 

solver can be stopped during the solution of the linear 

system, if the solution to the linear system has been 

computed accurately enough. By avoiding the waste 

of computation spent on over solving, an inexact 

Newton approach can be a serious competitor to a 

exact Newton method. 

3. INEXACT NEWTON METHODS 
An alternative to the direct solution (via LU 

factorization) of the linear system (1) is an iterative 

approach. Non stationary iterative methods for the 

solution of linear equations have received great 

attention recently from researchers in the field of 

numerical analysis. A promising technique in the 

category of Krylov subspace approaches is the 

Generalized Minimal Residual (GMRES [12]) 

method, which attempts to solve the linear system 

  
by minimizing the residual r defined by  
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via Krylov subspace updates to the candidate linear 

system solution z. GMRES is a member of the family 

of Krylov subspace iterative methods, which  

 

produces a sequence xk of approximations to the 

solution 2 = A-lb of linear system (2). In general, the 

Krylov subspace iterates are described by 

  
where zo is the initial estimate of the solution to (2) 

  
In particular, GMRES creates a sequence 2k that 

minimizes the norm of the residual at step k over the 

lc
th

 Krylov subspace as follows  

 
At step k , GMRES applies the Arnoldi process to a 

set of k ortho normal basis vectors for the k
th

 Krylov 

subspace to generate the next basis vector. When the 

norm Fig 1: The GMRES(m) algorithm (for A E 

PX") without preconditioning of the newly created 

basis vector is sufficiently small, GMRES solves the 

following (k + 1) x IC least squares problem 

 
where Hk is a (k + 1) x k upper Hessenberg matrix of 

full rank k and gk = Ilrollel with standard basis 

vector el Ei Rk+l. 'Io solve the least squares problem, 

a Modified Gram- Schmidt procedure is generally 

used. We have described a restarted GMRES 

algorithm, following [7], in Figure 1. As mentioned 

in [7], a forward difference approximation can be 

used to compute the directional derivatives used by 

GMRES. Since the Jacobian matrix is only used by 

GMRES in matrix vector multiplications, it is 

possible to avoid the cost of creating the Jacobian 

matrix. However, the forward difference 

approximations to the directional derivatives involve 

evaluating the nonlinear power flow mismatch 

function at every GMRES iteration. However 

problems in large scale power systems present 

research area in terms of applicability still cannot 

compete with direct methods because of possible 

convergence problem. 

 

 

 

 

 

 

 

 

Figure 1: Standard GMRES algorithm with right 

preconditioning 

 

4. FAST NEWTON-FGMRES 
The proposed fast Newton-FGMRES method is 

composed of the 1) Newton method, 2) FGMRES 

method for solving the linear equations, and 3) the 

three accelerating schemes including a hybrid 

scheme, a partial preconditioner update scheme, and 

an adaptive tolerance control scheme. The hybrid 

scheme generates the preconditioners for the inner 

iterations of the FGMRES method based on the 

complete LU factorization of the coefficient matrices. 

Of course, the complete LU factors can also be used 

to solve the corresponding linear equations. 

When the dimension of the coefficient matrix 

changes, the preconditioner can be fast updated from 

the previous one by using the partial preconditioner 

update scheme. Using the adaptive tolerance control 

scheme, the stopping criterion used by FGMRES is 

based on the residuals from the previous Newton 

iterations.  We are now in a position to present the 

fast Newton-FGMRES power flow method.  
Step 1) Input the data of the power system to be 

studied. 

Step 2) Initialization 

i. Set the initial value for bus voltage. 

ii. Construct the admittance matrix. 
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iii. Save the initial bus state information (PV bus or 

PQ bus) as flag 

iv. Define a threshold value for preconditioner 

updates. 

Step 3) Construct the Jacobian matrix J and evaluate 

the power mismatch ds 

Step 4) Solve the power mismatch equation 

. If L and U have not been formed, then 

i. Set flag0=flag 

ii. Factorize J and save the factors L,U: . 

iii. Solve by a forward elimination and a 

backward substitution using L and U. 

iv. Go to Step 5. 

Else 

i. If, Flag0≠Flag update the preconditioner by the 

partial preconditioner update scheme. 

ii. Solve by the FGMRES method. 

iii. If FGMRES converges to the tolerance of , go to 

Step 5. Otherwise, clear L and U do this step again. 

Step 5) Update the bus voltage value. 

  
Step 6) Check the reactive generation constraints and 

save the current bus state information as Flag. 

Step 7) Decide whether a new preconditioner is 

needed. 

i. Compare Flag with Flag0 and evaluate the number 

of buses whose states have been considerably 

changed m, . 

ii. If,m≥m0then a new preconditioner is required. 

Clear L and U. Otherwise, keep L 

and U. 

Step 8) Stopping criterion: If , then go to 

step 3; otherwise, power flow calculation stops. 

5. NUMERICAL RESULTS 
The proposed Newton-FGMRES and fast Newton-

FGMRES methods are evaluated on the following 

two practical power systems in North America: a 12 

000-bus system and a 21 000-bus system. The 

traditional Newton-LU method, the Newton-GMRES 

method, the proposed Newton-FGMRES method, and 

the proposed fast Newton-FGMRES method are 

compared in terms of convergence characteristics and 

computation time. The initial guess for the iterative 

solver was selected to be a flat start. The convergence 

criterion was set to and the maximum iteration 

number for GMRES and FGMRES was set to be 10. 

ILU- preconditioners were used in the Newton-

GMRES method and the Newton-FGMRES method. 

Different parameters for ILU- were also considered: 

k=15in (a) and k=25 in (b). We also use the 

approximate minimum degree ordering as the sparse 

ordering scheme. We first considered the cases with 

unlimited Q-generation and then 

 
considered the cases with limited Q-generation. In 

these numerical studies, the control actions of ULTC 

and phase-shifters are neglected. The computer used 

for the tests is described as follows: CPU: 1.83 GHz, 

the number of cores in CPU: 1, main memory: 1G, 

programming language: Fortran. All computation 

times shown in the tables are the average time. Note 

that we are only concerned with the computation time 

of the iterative process. For the fast Newton-

FGMRES method, the computation times listed in the 

tables correspond to those required from Step 3 to 

Step 8 of the flowchart of the method.  

We have observed that both the Newton-

FGMRES method and the fast Newton-FGMRES 

method converge faster than the Newton-GMRES 

method on the 12 000-bus system and the 21 000-bus 

system, respectively. The total computation time 

required by the three methods is summarized in 

Tables I and II. The proposed fast Newton-FGMRES 

method is generally faster than the Newton-FGMRES 

method and the Newton GMRES method. The 

difference in required computation time can be 

significant. For the 12 000-bus system, the fast 

Newton-FGMRES method can be 40.3% faster than 

the traditional Newton-GMRES method. For the 21 

000-bus system, the fast Newton-FGMRES method 

can be 18.5% faster than the traditional Newton-

GMRES method. This reveals that the three 

accelerating schemes are effective in improving the 

performance of the Newton-FGMRES. Figs. 1 and 2 

shows the convergence characteristics of the three 

methods on the 12 000-bus system and the 21 000-

bus system, respectively. It can be observed that by 
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the use of FGMRES, the Newton iteration can be 

reduced by at least two times the iterations using 

GMRES. Therefore both the Newton-FGMRES 

method and the fast Newton-FGMRES method 

converge faster than the traditional Newton-GMRES 

method. We next considered the cases with limited 

Q-generation. The upper and lower limits of the 

reactive power generation were checked during the 

solution process. The proposed fast Newton- 

FGMRES method was compared with the traditional 

Newton- GMRES method in terms of computation 

time. The test results are summarized in Table III The 

traditional direct method (Newton-LU) was used as a 

benchmark method for both the traditional Newton-

GMRES method and the fast Newton FGMRES 

method. The fast refactorization method used in this 

Newton-LU method is described as follows. The 

factorization is divided into two steps: the symbol 

decomposition and the numerical decomposition. In 

the symbol decomposition, the positions of nonzero 

fill-ins are identified 

 

 

 
Fig. 2. Convergence characteristics of different 

methods on the 12 000-bus system. 

 

 
Fig 3. Convergence characteristics of different 

methods on the 21 000-bus 

Our numerical studies reveal that the Newton-

GMRES method has no superiority in speed over the 

traditional Newton-LU method on these two large-

scale power systems. This can be explained from the 

viewpoint of the precondition: the dimension of the 

Jacobian changes during the iterative process and the 

repeating construction of preconditioners damages 

the advantage of the traditional Newton-GMRES 

method. However, the proposed fast Newton-

FGMRES method can still be faster than the Newton-

LU power flow method by 16.6% on the 12 000-bus 

system and 26.2% on the 21 000-bus system. In light 

of numerical evaluations of these two large-scale 

power systems, it may be concluded that the 

proposed fast Newton-GMRES method is 

considerably faster than the traditional Newton-LU 

method system. 
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Different Loading Conditions: 

 

 
Fig4.Comparison of the computation time required 

by the Newton-LU and the fast Newton-FGMRES 

under different loading conditions on the 21 000 bus 

system. 

 

VI. CONCLUSIONS 
In this paper, we have proposed a Newton-FGMRES 

method for solving power flow equations. From a 

computational viewpoint, Newton-FGMRES is a 

slight extension of the existing Newton-GMRES 

method. However, we have explored the numerical 

characteristics of power flow equations and 

developed three accelerating schemes including a 

hybrid scheme, The proposed fast Newton-FGMRES 

solver has been evaluated on two practical large-scale 

power systems, one with 12 000 buses and another 

with 21 000 buses. Numerical results show the 

advantages of the proposed fast Newton-FGMRES 

method as opposed to the traditional Newton-

GMRES method in terms of the convergence 

characteristics and the computation time. Even 

though the Newton-GMRES method has no 

superiority in speed over the traditional Newton-LU 

method on these two large-scale power flow 

equations, the proposed fast method consistently 

outperforms both the traditional Newton-LU and 

Newton-GMRES in terms of computational speed. 
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